A spatial SIS model in advective heterogeneous environments
نویسندگان
چکیده
منابع مشابه
Spatial patterns in a discrete-time SIS patch model.
How do spatial heterogeneity, habitat connectivity, and different movement rates among subpopulations combine to influence the observed spatial patterns of an infectious disease? To find out, we formulated and analyzed a discrete-time SIS patch model. Patch differences in local disease transmission and recovery rates characterize whether patches are low-risk or high-risk, and these differences ...
متن کاملEvolution of dispersal in closed advective environments.
We study a two-species competition model in a closed advective environment, where individuals are exposed to unidirectional flow (advection) but no individuals are lost through the boundary. The two species have the same growth and advection rates but different random dispersal rates. The linear stability analysis of the semi-trivial steady state suggests that, in contrast to the case without a...
متن کاملAsymmetric spreading in highly advective, disordered environments
Spreading of bacteria in a highly advective, disordered environment is examined. Predictions of super-diffusive spreading for a simplified reaction-diffusion equation are tested. Concentration profiles display anomalous growth and super-diffusive spreading. A perturbation analysis yields a crossover time between diffusive and super-diffusive behavior. The time’s dependence on the convection vel...
متن کاملSuper compact pairwise model for SIS epidemic on heterogeneous networks
In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new closure relation that involves not only the average degree but also the second and third moments of the degree distribution. Its derivation uses an...
متن کاملSIS epidemic attractors in periodic environments.
The demographic dynamics are known to drive the disease dynamics in constant environments. In periodic environments, we prove that the demographic dynamics do not always drive the disease dynamics. We exhibit a chaotic attractor in an SIS epidemic model, where the demograhic dynamics are asymptotically cyclic. Periodically forced SIS epidemic models are known to exhibit multiple attractors. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2016
ISSN: 0022-0396
DOI: 10.1016/j.jde.2016.05.025